
Two-Dimensional Vector Dot Products

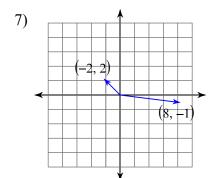
Find the dot product of the given vectors.

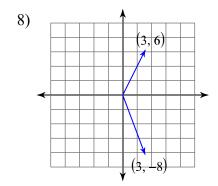
1)
$$\vec{u} = \langle 3, 9 \rangle$$

 $\vec{v} = \langle 6, 5 \rangle$

2)
$$\vec{u} = -\vec{i} + 5\vec{j}$$

 $\vec{v} = -6\vec{i} - 2\vec{j}$




State if the two vectors are parallel, orthogonal, or neither.

5)
$$\vec{u} = \langle 4, -9 \rangle$$

 $\vec{v} = \langle -9, 4 \rangle$

6)
$$\vec{u} = -5\vec{i} - 2\vec{j}$$

 $\vec{v} = -10\vec{i} + 25\vec{j}$

Find the measure of the angle between the two vectors.

9)
$$\vec{u} = \langle -8, -2 \rangle$$

 $\vec{v} = \langle -3, 3 \rangle$

10)
$$\vec{u} = -8\vec{j}$$
$$\vec{v} = -9\vec{i} - 2\vec{j}$$

Find the projection of u onto v.

11)
$$\vec{u} = \langle 8, 2 \rangle$$

 $\vec{v} = \langle -7, -3 \rangle$

12)
$$\vec{u} = 5\vec{i} - 5\vec{j}$$
$$\vec{v} = 7\vec{i} - 5\vec{j}$$

Find the projection of u onto v. Then write u as the sum of two orthogonal vectors.

13)
$$\vec{u} = \langle -2, -3 \rangle$$

 $\vec{v} = \langle -7, 9 \rangle$